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Global Status 

USA Status (USGS, 2014) 

India and Bangladesh 

Amini et al. 2008

Global Contamination 



Concept of Graphene Oxide Based Composites

• Platform to build new adsorbents

• Two basal planes available

• High dispersion 



Research Background

❖ Arsenic (As) is toxic, carcinogenic, non-biodegradable, and persistence metalloid

❖ MCL in drinking water 10 µg/L (WHO)

❖ Adsorbent with high adsorption capacity and selectivity

❖ Iron nanoparticles (Fe NPs) show high selectivity to As

❖ Fe NPs is highly agglomerate

❖ Graphene oxide is single layer structure of carbon having high stability and
negatively charged surface



Objectives

❖ Evaluation of graphene-supported Fe NPs and conventional Fe NPs for arsenic 
removal and their possible mechanisms.

❖ Effectiveness under different  environmental conditions

❖ Desorption pattern 



Synthesis Pathway of Graphene-Fe Hybrid

(Adopted from Li et al., 2014) 

Graphene oxide magnetite (GM)

Graphene oxide nanoscale zerovalent iron (GNZVI)



Material Characterization 

Graphene Oxide

NZVI

GNZVI

https://ndusbpos-my.sharepoint.com/personal/tonoy_das_ndus_edu/Documents/Research data/Tonoy transfer 8-23-2017/171538 NZVI(1).docx?web=1
https://ndusbpos-my.sharepoint.com/personal/tonoy_das_ndus_edu/Documents/Research data/Tonoy transfer 8-23-2017/171540 GRAPHENE OXIDE NZVI(1).docx?web=1


Material Characterization 

Magnetite 

GM

https://ndusbpos-my.sharepoint.com/personal/tonoy_das_ndus_edu/Documents/Research data/Tonoy transfer 8-23-2017/171539 MAGNETITE(1).docx
https://ndusbpos-my.sharepoint.com/personal/tonoy_das_ndus_edu/Documents/Research data/Tonoy transfer 8-23-2017/171541 GRAPHENE OXIDE MAGNETITE(1).docx


Advantages of Graphene-Oxide Supported Fe-Nps

• Less agglomeration 

• Better exposure to Arsenic Solution  

• Higher Removal 



As Removal by Batch Study
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Arsenic Removal on Fe Content Basis

In 10mg mg Fe 

• GNZVI 5.545

• NZVI 9.5

• GM 5.45

• M 7.27
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Zeta Potential (mV) and Point of Zero Charge 

Adsorbent Mean pH

GO -48.50±0.33 8.70

GNZVI -22.97±0.90 8.58

GNZVI+As -38.13±0.98 8.79

NZVI 11.67±0.87 8.9

NZVI+As 7.26±0.47 8.85

GM -10.76±0.87 7.78

GM+As -26.70±0.24 4.77

M 8.27±1.19 8.01

M+As -14.07±0.71 4.38
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Adsorbed Arsenic in GNZVI

https://ndusbpos-my.sharepoint.com/personal/tonoy_das_ndus_edu/Documents/Research data/Tonoy transfer 8-23-2017/171543 ABSORBED ARSENIC NZVI(1).docx


Mechanisms for GNZVI 

Bezbaruah et al, 2014



Adsorption Isotherm of GNZVI

Langmuir Freundlich

As(V)
qm (mg/g) 384.62 n 1.779

Kl(L/mg) 0.092 kf 20.649

R2 0.9814 R2 0.9617

As(III)
qm (mg/g) 294.12 n 2.15

Kl(L/mg) 0.084 kf 24.31

R2 0.99 R2 0.8672
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Low Concentration Removal
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Desorption of Arsenic from Nano-Composite 
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Sequential Extraction

GNZVI

Extractant Target phase

Mgcl2 ionically bound As

Phosphate strongly adsorbed As

Oxalic acid As coprecipitated 

with amorphous Fe 

oxyhydroxides

HNO3
As coprecipitated

with crystalline Fe 

oxyhydroxides

Keon, 2001



Conclusions

❖Graphene oxide iron nanocomposites having better removal

❖The GNZVI recorded high adsorption capacity

❖Works effectively under variable environmental condition

❖Low As desorption from adsorbed phase
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STEM−EDS elemental mappings of Fe−As reactions at three 
resolutions: (1, 7, and 13) HAADF images, (2, 8, and 14) Fe, (3, 9, 
and 15) O, (4, 10, and 16) As, (5, 11, and 17) Fe and As, and (6, 12, 
and 18) Fe, As, and O

Ling and Zhang, 2014

Reduction potential of NZVI & As(V)-to-As(0) −0.447 V 
(Fe/Fe(II)), and . 0.499 V

Yan et al., 2012



Removal in mixture of AS(V) & As(III) 
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Arsenic Contamination- Public Health 

• Arsenic Group 1 Carcinogen (WHO)

• > 300 million worldwide.

• 13 million : USA; 70 million : Bangladesh (Murcott 2012).

• Acute effects: vomiting, abdominal pain and diarrhea lead to numbness and tingling

of the extremities, muscle cramping and death

• Long-term effects: skin lesions precursor to skin cancer, cancers of the bladder and

lungs, developmental effects, neurotoxicity, diabetes, pulmonary disease and

cardiovascular disease, adverse pregnancy outcomes and infant mortality, with

impacts on child health



Information
• Reduction potential of nZVI & As(V)-to-As(0) −0.447 V (Fe/Fe(II)), and . 0.499 V. The reduction of As(V) 

thermodynamically possible

• The first step in removing arsenic from water entails the convective transfer and/or molecular diffusion of dissolved 
arsenate from the bulk solution to the nZVI−water interface. Arsenate is attracted to the surface by electrostatic interactions 
as both arsenate and the iron surface are charged, and via ligand exchange that replaces a surface-bonded -OH group (>Fe− 
OH) with an arsenate ion. This constitutes the outer ring observed on the arsenic mapping. The surface-bound As(V) 
continues to diffuse through the surface layer. Further penetration or diffusion of As(V) is induced by its reduction to 
As(III) and As(0), and the latter accumulates at the Fe(0)− oxide interface

• Fe(III) oxide near the particle−water interface to mixed Fe(II)/Fe(III) oxides close to the core.  The surface of the oxide 
layer contains hydroxide groups after being exposed to water and has acid−base chemistry similar to that of iron oxides in 
water. Measurements show that the nZVI has a zerocharge pH or pHzpc at ∼8.2 Thus, it can attract and/or adsorb As(V) or 
As(III) via electrostatic attractions or ligand exchanges that replace surface-bonded OH groups (>Fe−OH) with arsenate 
ions. 

• The presence of oxygen vacancies and lattice disorder could give arise to elevated charge transfer and ionic mobility at 
room temperature.

• For nZVI, the maximum As(III) loading capacity is 2.2 mM As/g, while the value of the oxides is no more than 0.17 mM
As/g. As a firstorder estimate in which we consider that the average As(III) adsorption density on an iron oxide surface is 
∼3 sites/nm2 , 13 one can estimate that the maximum As(III) uptake by the iron oxides is ∼0.2 mM As/g, which is 
consistent with the experimentally observed capacities. On the other hand, the capacity of arsenite removal by nZVI is well 
in excess of the total surface adsorption sites available, indicating that arsenite was not retained as merely a surface 
adsorbed layer


